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Multimedia Intelligence: When Multimedia Meets
Artificial Intelligence

Wenwu Zhu, Fellow, IEEE, Xin Wang

Abstract—Owing to the rich emerging multimedia applications
and services in the past decade, super large amount of multimedia
data has been produced for the purpose of advanced research in
multimedia. Furthermore, multimedia research has made great
progress on image/video content analysis, multimedia search
and recommendation, multimedia streaming, multimedia content
delivery etc. At the same time, Artificial Intelligence (AI) has
undergone a ‘“new” wave of development since being officially
regarded as an academic discipline in 1950s, which should give
credits to the extreme success of deep learning. Thus, one question
naturally arises: What happens when multimedia meets Artificial
Intelligence? To answer this question, we introduce the concept of
Multimedia Intelligence through investigating the mutual-influence
between multimedia and Artificial Intelligence. We explore the
mutual influences between multimedia and Artificial Intelligence
from two aspects: i) multimedia drives Artificial Intelligence to
experience a paradigm shift towards more explainability and ii)
Artificial Intelligence in turn injects new ways of thinking for
multimedia research. As such, these two aspects form a loop in
which multimedia and Artificial Intelligence interactively enhance
each other. In this paper, we discuss what and how efforts have been
done in literature and share our insights on research directions that
deserve further study to produce potentially profound impact on
multimedia intelligence.

Index Terms—Multimedia artificial intelligence, reasoning in
multimedia.

I. WHEN MULTIMEDIA MEETS Al

HE term Multimedia has been taking on different mean-
T ings from its first advent in 1960 s until today’s common
usage which refers multimedia to “an electronically delivered
combination of media including videos, still images, audios, and
texts in such a way that can be accessed interactively.”! After
evolutionary development in more than two decades [1], [2],
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multimedia research has also made great progress on im-
age/video content analysis, multimedia search and recommen-
dation, multimedia streaming, multimedia content delivery etc.
The theory of Artificial Intelligence, a.k.a. Al, coming into the
sight of academic researchers a little earlier in 1950s, has also
experienced decades of development for various methodologies
covering symbolic reasoning, Bayesian networks, evolutionary
algorithms and deep learning. These two important research
areas have been involving almost independently until the in-
creasing availability of different multimedia data types enables
machine learning to discover more practical models to process
various kinds of real-world multimedia information and thus
find its application in real-world scenarios. Therefore, a crucial
question which deserves deep thinking is what will happen when
multimedia and Al meet each other.

To answer this question, we propose the concept of Multi-
media Intelligence through exploring the mutual influences be-
tween multimedia and AI. When centering multimedia around
Al multimedia drives Al to experience a paradigm shift towards
more explainability, which is evidenced by the fact that a large
amount of multimedia data provides great opportunities to boost
the performances of Al with the help of rich and explainable in-
formation. The resulting new wave of Al can also be reflected by
the plans devised by top universities or central governments for
future Al. For instance, Stanford University proposed the “Ar-
tificial Intelligence 100-year (Al 100)” plan for Al in 2014 to
learn how people work, live and play. Furthermore, the U.S. gov-
ernment later announced a proposal “Preparing for the Future
of Artificial Intelligence” in 2016, setting up the “Al and Ma-
chine Learning Committee”. The European Union (EU) has put
forward a European approach to Artificial Intelligence, which
highlights building trust in human-centric Al, including fech-
nical robustness and safety, transparency, accountability etc.
Meanwhile, China has also established the New Generation Ar-
tificial Intelligence Development Plan emphasizing explainable
and inferential AI. When centering Al around multimedia, Al
in turn leads to more rational multimedia. One ultimate goal of
Al is to figure out how an intelligent system can thrive in the
real world and perhaps reproduce this process. The ability of
perception and reasoning is one important factor that enables
the survival of human in various environments. Therefore, ef-
forts on investigation of human-like perception and reasoning
in Al will lead to more inferrable multimedia with the ability to
perceive and reason. However, there has been far fewer efforts
focusing on this direction, i.e., utilizing the power of Al to boost
multimedia through enhancing its ability of reasoning. In this

1520-9210 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 26,2022 at 09:39:54 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2236-9290
https://orcid.org/0000-0002-0351-2939
mailto:wwzhu@tsinghua.edu.cn
mailto:xin_wang@tsinghua.edu.cn
mailto:wgao@pku.edu.cn
https://ieeexplore.ieee.org

1824

Reasoning

Artificial
Intelligence

Explainability

Fig. 1. The “Loop” of Multimedia Intelligence.

paper, we explore the mutual influences between multimedia
and Artificial Intelligence from two aspects:

® Center multimedia around AI: multimedia drives Al to

experience a paradigm shift towards more explainability.
® Center Al around multimedia: Al in turn leads to more
inferrable multimedia.

Thus, multimedia intelligence arises with the convergence of
multimedia and Al, forming the loop where multimedia and Al
mutually influence and enhance each other, as is demonstrated
in Fig. 1.

More concretely, given that the current Al techniques thrives
with the reign of machine learning in data modeling and analysis,
we discuss the bidirectional influences between multimedia and
machine learning from the following two directions:

® Multimedia promotes machine learning through producing

many task-specific and more explainable machine learning
techniques as well as enriching the varieties of applications
for machine learning.

® Machine learning boosts the inferrability of multimedia

through endowing it with the ability to reason.

We summarize what have been done and analyze how well
these have been done, point out what have not been done and how
they possibly could be done. We further present our insights on
those promising research directions that may produce profound
influence on multimedia intelligence.

II. MULTIMEDIA PROMOTES MACHINE LEARNING

On the one hand, the multimodal essence of multimedia data
drives machine learning to develop various emerging techniques
such that the heterogeneous characteristics of multimedia data
can be well captured and modeled [3]. On the other hand, the
prevalence of multimedia data enables a wide variety of multi-
modal applications ranging from audio-visual speech recogni-
tion to image/video captioning and visual question answering.
Asis shown in Fig. 2, in this section, we discuss the ways of mul-
timedia promoting the development of machine learning from
two aspects: 1) how multimedia promotes machine learning tech-
niques and ii) how multimedia promotes machine learning
applications.

A. Multimedia Promotes Machine Learning Techniques

Multimedia data contains various types of data such as image,
audio and video etc., among which the single modality data has
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Fig. 3. Multimodal Compact Bilinear Pooling, figure from [5].

been widely studied by researchers in the past decade. How-
ever, an increasing amount of multimedia data is multimodal
and heterogeneous, posing great challenges for machine learn-
ing algorithms to precisely catch the relationships among differ-
ent modalities and thus appropriately deal with the multimodal
data. Therefore we place our focuses on multimodal multimedia
data and summarize four fundamental problems in analyzing it,
i.e., multimedia representation, multimedia alignment, multime-
dia fusion and multimedia transfer, highlighting corresponding
machine learning techniques designed to solve each of them in
order to appropriately handle the various multimedia data.

Multimedia Representation: To represent the multimedia
data, there are mainly two different categories: joint and coordi-
nated. Joint representations combine several unimodal data into
a same representation space, while coordinated representations
separately process data of different modalities, but enforce cer-
tain similarity constraints on them, and make them comparable
in a coordinate space. To get joint representations of multimedia
data, element-wise operation, feature concatenation, fully con-
nected layers, multimodal deep belief network [4], multimodal
compact bilinear pooling [5] and multimodal convolutional neu-
ral networks [6] are leveraged or designed to combine data from
different modalities. While for getting coordinated representa-
tion, a typical example is DeViSE (a Deep Visual Semantic Em-
bedding [7]) which constructs a simple linear map from image
to textual features such that corresponding annotation and image
representation would have a larger inner product value between
them than noncorresponding ones. Some other works also es-
tablish the coordinated space on the shared hidden layers of two
unimodal auto-encoders [8], [9]. Fig. 3 shows an example of
multimodal representation.
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Fig. 4. The variational context model for multimodal alignment, figure
from [13]. Given an input referring expression and an image with region pro-
posals, the target is to localize the referent as output. A grounding score function
is developed with the variational lower-bound composed by three cue-specific
multimodal modules, which is indicated by the description in the dashed color
boxes.

Multimedia Alignment: Multimodal multimedia data align-
ment is a fundamental issue for understanding multimodal data,
which aims to find relationships and alignment between in-
stances from two or more modalities. Multimodal problems such
as temporal sentence localization [10]-[12] and grounding re-
ferring expressions [13], [14] are under the research field of mul-
timodal alignment, as they need to align the sentences or phrases
with the corresponding video segments or image regions. Mul-
timodal alignment can be categorized into two main types —
implicit and explicit. BaltruSaitis and Tadas et al. [15] catego-
rize models whose main objective is aligning subcomponents of
instances from two or more modalities as explicit multimodal
alignment. In contrast, implicit alignment is used as an interme-
diate (normally latent) step for another task. The models with
implicit alignment do not directly align data or rely on supervised
alignment examples, they instead learn how to align the data in
a latent manner through model training. For explicit alignment,
Malmaud et al. [16] utilize a Hidden Markov Model (HMM)
to align the recipe steps to the (automatically generated) speech
transcript, Bojanowski ef al. [17] formulate a temporal align-
ment problem by learning a linear mapping between visual and
textual modalities, so as to automatically provide a time (frame)
stamp in videos for sentences. For implicit alignment, attention
mechanism [18] serves as a typical tool by telling the decoder
to focus more on the targeted sub-components of the source to
be translated, such as regions of an image [19], frames or seg-
ments in a video [20], [21], words of a sentence [18] and clips
of an audio sequence [22] etc. Fig. 4 demonstrates an example
of multimodal alignment.

Multimedia Fusion: Multimodal fusion is also one of the
critical problems in multimedia artificial intelligence. It aims
to integrate signals from multiple modalities together with the
goal of predicting a specific outcome: a class (e.g., positive or
negative) through classification, or a continuous value (e.g., pop-
ulation of a certain year in China) through regression. Overall,
the multimodal fusion approaches can be classified into two di-
rections [ 15]: model-agnostic and model-based. Model-agnostic
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Fig. 5. (a) The multimodal DBN in pretraining and (b) The multimodal au-
toencoder in fine-tuning, figure from [8].

approaches can also be split into three types: early fusion,
late fusion and hybrid fusion. Early fusion integrates features
from multiple modalities immediately after extraction (usu-
ally by simply concatenating their representations). Late fu-
sion performs integration after each modality makes its own
decision (e.g., classification or regression). Hybrid fusion gets
consolidated outputs by combining the early fusions predictors
and individual unimodal predictors together through a possi-
bly weighted aggregation. Model-agnostic approaches can be
implemented using almost any unimodal classifiers or regres-
sors, which means the techniques they use are not designed for
multimodal data. In contrast, in model-based approaches, three
categories of models are designed to perform multimodal fu-
sion: kernel-based methods, graphical models and neural net-
works. Multiple Kernel Learning (MKL) [23] is an extension
to the kernel support vector machine (SVM) that allows differ-
ent kernels to be used for data from different modalities/views.
Since kernels can be seen as similarity functions between data
points, the modal-specific kernel in MKL can better fuse het-
erogeneous data. Graphical models are another series of popu-
lar methods for multimodal fusion, which can be divided into
generative methods such as coupled [24] and factorial hidden
Markov models [25] alongside dynamic Bayesian networks [26]
and discriminative methods such as conditional random fields
(CRF) [27]. One advantage of graphical models is that they are
able to exploit temporal and spatial structure of the data, making
them particularly suitable for temporal modeling tasks like audio
visual speech recognition. Currently, neural networks [28] have
been widely used for the task of multimodal fusion. For example,
long short term memory (LSTM) network [29] has demonstrated
its advantages over graphical models for continuous multimodal
emotion recognition [30], autoencoder has achieved satisfying
performances for multimodal hashing [8], multimodal quantiza-
tion [31] and video summarization [9], and convolutional neural
network has been widely adopted for image-sentence retrieval
tasks [6]. Although the deep neural network architectures pos-
sess the capability of learning complex patterns from a large
amount of data, they suffer from the incapability of reasoning.
Fig. 5 illustrates an example of multimodal fusion.
Multimedia Transfer: The problem of multimodal multi-
media transfer aims at transferring useful information across
different modalities with the goal of modeling a resource-poor
modality by exploiting knowledge from another resource-rich
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modality [15]. For parallel multimodal setting which assumes
modalities are from the same dataset and there is a direct cor-
respondence between instances, transfer learning is a typical
way to exploit multimodal transfer. Multimodal autoencoder [8],
[28], for instance, can transfer information from one modality to
another through the shared hidden layers, which not only leads to
appropriate multimodal representations but also leads to better
single-peak representations. Transfer learning is also feasible for
non-parallel multimodal setting where modalities are assumed to
come from different datasets and have overlapping categories or
concepts rather than overlapping instances. This type of transfer
learning is often achieved by utilizing coordinated multimodal
representations. For example, DeViSE [7] uses text labels to
improve image representations for classification task by coordi-
nating CNN visual features with word2vec textual features [32]
trained on separate datasets. To process non-parallel multimodal
data in multimodal transfer, conceptual grounding [33] and zero
shot learning [34] are two representative methodologies adopted
in practice. For the hybrid multimodal setting (mixture of par-
allel and non-parallel data) where the instances or concepts are
bridged by a third modality or a dataset, the most notable ex-
ample is the Bridge Correlational Neural Network [35] which
uses a pivot modality to learn coordinated multimodal represen-
tations for non-parallel data. This method can also be used for
machine translation [36] and transliteration [37] to bridge dif-
ferent languages that do not have parallel corpora but share a
common pivot language. Fig. 6 illustrates an example of multi-
modal transfer.

B. Multimedia Promotes Machine Learning Applications

As is discussed, the core of current Al techniques lies in the
development of machine learning, therefore we will highlight
several representative machine learning applications including
multimedia search and recommendation, multimedia recogni-
tion, multimedia detection, multimedia generation and multime-
dia language and vision whose popularity should take credits
from the availability of rich multimodal multimedia data.

Multimedia Search and Recommendation: Similarity
search [38], [39] has always been a very fundamental research
topic in multimedia information retrieval — a good similar-
ity searching strategy requires not only accuracy but also effi-
ciency [40]. Classical methods on similarity search are normally
designed to handle the problem of searching similar contents
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Fig.7. Outline of the audio-visual speech recognition (AVSR) pipeline, figure
from [54].

within one single modality, e.g., searching similar texts (im-
ages) given a text (image) as query. On the other hand, the fast
development of multimedia applications in recent years has cre-
ated a huge number of contents such as videos, images, voices
and texts which belong to various information modalities. These
large volumes of multi-modal data have produced a great craving
for efficient and accurate similarity search across multi-modal
contents [41], [42], such as searching similar images given text
queries or searching relevant texts given image queries. There
have been some surveys on multi-modal retrieval and we refer
interested readers to overview papers [43], [44] for more de-
tails. The fast development of Internet in the past decades has
motivated the emergence of various web services with multime-
dia data, which drives the transformation from passive multime-
dia search to proactive multimedia retrieval, forming multimedia
recommendation. Multimedia recommendation can cover a wide
range of techniques designed for video recommendation [45],
music recommendation [46], group recommendation [47] and
social recommendation [48]-[50] etc. Again readers may find
more detailed information about multimodal recommendation in
arecent overview paper on multimodal deep analysis for multi-
media [51].

Multimedia Recognition: One of the earliest examples
of multimedia research is audio-visual speech recognition
(AVSR) [52]. The work was motivated by the McGurk effect [53]
in which the speech perception is conducted under the visual and
audio interaction of people. The McGurk effect stems from an
observation that people claim to hear syllable [da] when seeing
the film of a young talking woman where repeated utterances
of syllable [ba] were dubbed on to lip movements for [ga].
These results motivate many researchers from the speech com-
munity to extend their approaches with the help of extra visual
information, specifically for those from deep learning commu-
nity [28], [54], [55]. Incorporating multimodal information into
the speech perception procedure indeed improves the recogni-
tion performance and increase the explainability to some extend.
Some others also observe that the advantages of visual informa-
tion become more prominent when the audio signal ia noisy [28],
[56]. The development of audio-visual speech recognition is able
to facilitate a wide range of applications including speech en-
hancement and recognition in videos, video conferencing and
hearing aids etc., especially in situations where multiple peo-
ple are speaking in a noisy environment [57]. Fig. 7 presents an
example of audio-visual speech recognition pipeline.

Multimedia Detection: Animportant research area that heav-
ily utilizes multimedia data is human activity detection [58].
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basketball-shoot : (a) color images, (b) depth images (background of each depth
frame is removed), (c) skeleton joint frames, and (d) inertial sensor data (accel-
eration and gyro-scope signals), figure from [59].

Since human often exhibit highly complex behaviors in social
activities, it is natural that machine learning algorithms resort
to multimodal data for understanding and identifying human
activities. Several works in deep multimodal fusion typically in-
volve modalities such as visual, audio, depth, motion and even
skeletal information [59]-[61]. Multimodal deep learning based
methods have been applied to various tasks involving human ac-
tivities [58], which contain action detection [62], [63] (an activ-
ity may consist of multiple shorter sequences of actions), gaze
direction estimation [64], [65], gesture recognition [66], [67],
emotion recognition [68], [69] and face recognition [70], [71].
The popularity of mobile smartphones with at least 10 sensors
has spawned new applications involving multimodal data, in-
cluding continuous biometric authentication [72], [73]. Fig. 8
demonstrates an example of multimodal detection.
Multimedia Generation: Multimodal multimedia data gen-
eration is another important aspect for multimedia artificial in-
telligence. Given an entity in one modality, the task is to generate
the same entity in a different modality. For instance, image/video
captioning and image/video generation from natural language
serve as two sets of typical applications. The core ideas in mul-
timodal generation is to translate information from one modal-
ity to another for generating contents in the new modality. Al-
though the approaches in multimodal generation are very broad
and are often modality specific, they can be categorized into
two main types — example-based and generative-based [15].
Example-based methods construct a dictionary when translating
between the modalities, while generative-based methods con-
struct models that are able to produce a translation. Im2text [74]
is a typical example-based method which utilizes global image
representations to retrieve and transfer captions from dataset to a
query image. Some other example-based methods adopt Integer
Linear Programming (ILP) as an optimization framework [75],
which retrieves existing human-composed phrases used to de-
scribe visually similar images, then selectively combine those
phrases to generate a novel description for the query image. For
generative-based methods, the encoder-decoder designs based
on end-to-end trained neural networks are currently one of the
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between the input captions and generating canvas, figure from [79]. The caption
is encoded using the Bidirectional RNN (left). The generative RNN takes a latent
sequence z1.7 sampled from the prior along with the dynamic caption repre-
sentation s.7 to generate the canvas matrix ¢, which is then used to generate
the final image « (right). The inference RNN is used to compute approximate
posterior () over the latent sequence.

most popular techniques for multimodal generation. The main
idea behind such models is to first encode a source modality
into a condensed vectorial representation, and then use a de-
coder to generate the target modality. Although encoder-decoder
models are firstly used for machine translation [76], [77], they
are further employed to solve image/video captioning [19], [78]
and image/video/speech generation [79]-[83] problems. Fig. 9
presents an example for multimodal generation.

Multimedia Language and Vision: Another category of
multimodal applications emphasize the interaction between lan-
guage and vision. The most representative applications are tem-
poral sentence localization in videos [10]-[12], image/video
captioning [84]-[86] and image/video generation from natural
language [79], [83], [87], [88]. Temporal sentence localization is
another form of activity detection in videos, which aims to lever-
age natural language descriptions instead of a pre-defined list of
action labels to identify specific activities in videos [10]-[12]
because the complex human activities cannot be simply sum-
marized as a constrained label set. Since natural language sen-
tences are able to provide more detailed descriptions of the target
activities, temporal boundaries can be detected more precisely
with the full use of visual and textual signals [89], [90]. This can
further promote a series of downstream video applications such
as video highlight detection [91], video summarization [9], [92]
and visual language navigation [93]. In addition, localizing natu-
ral languages in image regions is defined similarly as grounding
referring expressions [13], [14]. Image/video captioning aims at
generating a text description for the input image/video, which
is motivated by the necesity to help visually impaired people
in their daily life [94] and is also very important for content
based retrieval. Therefore, the captioning techniques can be ap-
plied to many areas including biomedicine, commerce, military,
education, digital libraries, and web searching [95]. Recently,
some progress has also been achieved in the inverse task —
image/video generation from natural language [87], [88], [96],
which targets at providing more opportunities to enhance me-
dia diversity. However, both image/video captioning and gen-
eration tasks have main challenges in evaluation, i.e., how to
evaluate the qualities of the predicted descriptions or generated
images/videos. Fig. 10 shows an example of video captioning.
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Fig. 10. A basic framework for deep learning based video captioning. A visual
model encodes the video frames into a vector space. The language model takes
visual vector and word embeddings as inputs to generate the sentence describing
the input visual content.

III. MACHINE LEARNING BOOSTS MULTIMEDIA

On the one hand, exploring computer algorithm’s ability for
human-like perception and reasoning has always been one of
top priorities in machine learning research. On the other hand,
human cognition, as is illustrated in Fig. 11, can also be viewed
as a cascade of perception and reasoning [97]:

® We explore our surroundings and build up our basic per-

ceptional understanding of the world.

® We reason our perceptional understanding with our learned

knowledge and obtain a deeper understanding or new
knowledge.

Therefore, machine learning research focusing on studying
perception and reasoning can enhance the human-like reason-
ing characteristics in multimedia, resulting in more inferrable
multimedia.

Currently, deep learning methods can accomplish the percep-
tion parts very well: they can distinguish cats and dogs [98],
identify persons [99], and answer simple questions [100]. How-
ever, they could hardly perform any reasoning: they can neither
give a reasonable explanation to their perceptive prediction nor
conduct explicit human-readable reasoning. Although computer
algorithms are still far away from real human-like perception and
reasoning, in this section we briefly review the progress of neural
reasoning from the deep learning community, hoping to provide
readers with a picture of what have been done in this direction.

A. Reasoning-Inspired Perception Learning

Some researchers try to equip the neural networks with
reasoning ability through augmenting neural networks with
reasoning-inspired layers or modules. For example, the human
reasoning process may include multi-round thinking: we may
repeat a certain reasoning procedure several times until reach-
ing a certain goal. This being the case, some recurrent-reasoning
layers are added to the neural network models to simulate this
multi-round process. Also, relational information and external
knowledge (organized as knowledge graph) are also essential for
computer algorithms to gain the ability of reasoning on certain
facts. These factors are also taken into account when design-
ing deep neural networks by means of adopting Graph Neural
Network [101] or Relation Network [102], [103].

Multi-Step Reasoning (RNN): The aim of multi-step rea-
soning is to imitate human’s multi-step thinking process. Re-
searchers insert a recurrent unit into the neural network as a
multi-step reasoning module [104]-[106]. Hudson ez al. [104]
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design a powerful and complex recurrent unit which is capa-
ble of meeting the definition of Recurrent Neural Network Unit
and utilizing many intuitively designing such as ‘control unit,’
‘read unit’ and ‘write unit‘ to simulate human’s one-step rea-
soning process. Wu [105] adopt a multi-step reasoning strat-
egy to discover step-by-step reasoning clue for visual question
answering (VQA). Cadene et al. [106] introduce a multi-step
multi-modal fusion schema to answer VQA questions. Besides,
Das et al. [107] propose to use a multi-step retriever-reader
interaction model to tackle the task of question answering.
Duan et al. [108] uses a multi-round decoding strategy to learn
better program representations of video demos. These models
improve the performance significantly and claim themselves
to be new state-of-the-art works for solving problems in re-
lated scenarios. However, these models are not perfect as they
need more complex structures whose internal reasoning pro-
cesses are even harder to interpret. Also, these methods adopt
a fixed recurrent reasoning step for the sake of easy implemen-
tation, which is much less flexible than the human reasoning
process.

Relational Reasoning (GNN): In addition to imitat-
ing human’s multi-step reasoning process, another way of
simulating human-like reasoning is utilizing graph neural
network(GNN) [101] to imitate human’s relational reasoning
ability. Most of these works use a graph neural network to ag-
gregate low-level perceptional features and build up enhanced
features to promote the task of object detection, object tracking
and visual question answering [109]-[114]. Yu et al. [109]
and Xu et al. [110] use GNN to integrate features from object
detection proposals for various tasks. While Narasimhan et al.
[112] and Xiong et al. [113] utilize GNN as a message-passing
tool to strengthen object features for visual question answering.
Aside from works on image-level features, Liu ef al. [115] and
Tsai et al. [116] build graphs on spatial-temporal data for video
social relations detection. Duan et al. [117] use relational data
to improve 3D point cloud classification performances as well as
increase the model’s interpretability. In their work, an object can
be seen as a combination of several sub-objects who together
with their relations define the object. For example, a bird can be
seen as a complex integration of sub-objects such as ‘wings,’
‘legs,” ‘head,” ‘body’ and their relations, which is believed to be
capable of improving the model performance and interpretabil-
ity. Besides, Wen et al. [118] take relations among multiple
agents into consideration for the task of multi-agent reinforce-
ment learning, and Chen et al. [119] propose a two-stream net-
work that combines convolution-based and graph-based model
together.

Attention Map and Visualization: A lot of works use the
attention maps as a way of reasoning visualization or inter-
pretation. These attention maps, to some extent, validate the
reasoning ability of the corresponding methods. In particular,
Mascharka et al. [120] propose to use attention map as a visual-
ization and reasoning clue. Cao et al. [121] use the dependency
tree to guide the attention map for VQA task. Fan et al. [122]
resort to latent attention map to improve multi-model reasoning
tasks.
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B. Perception-Reasoning Cascade Learning

On the one hand, quite a few efforts have been devoted to in-
tegrating the ability to reason into deep neural networks (DNN).
On the other hand, others try to decouple DNN’s powerful
low-level representation ability and cascade the process of per-
ception to simulate high-level human-readable cognition, aim-
ing at true Al [97].

Neural Modular Network: Neural module network (NMN)
is first proposed by Andreas et al. [123] and further finds its ap-
plications in visual reasoning tasks. The main idea of NMNss is
to dynamically assemble instance-specific computational graphs

Human-like Cognition.

with a collection of pre-defined neural modules, thus enabling
personalized heterogeneous computations for each input in-
stance. The neural modules are designed with specific functions,
e.g., Find, Relate, Answer etc., and typically assembled
into a hierarchical tree structure on the fly according to different
input instances.

The motivation of NMN comes from two observations:

1) Visual reasoning is inherently compositional.

2) Deep neural networks have powerful representation ca-

pacities.

The compositional property of NMN allows us to decom-
pose visual reasoning procedure into several shareable, reusable
primitive functional modules. Afterwards, deep neural networks
can be used to implement these primitive functional modules as
neural modules effectively. The merits of modeling visual capa-
bility as hierarchical primitives are manifold. First, it is possible
to distinguish low-level visual perception from higher-level vi-
sual reasoning. Second, it is able to maintain the compositional
property of the visual world. Third, the resulting models are
more interpretable compared with holistic methods, potentially
benefiting the development of human-in-the-loop multimedia
intelligence in the future.

Visual question answering (VQA) task is a great testbed
for developing computer algorithms’ visual reasoning abilities.
The most widely-used VQA datasets [100], [124] emphasize
much more on visual perception rather than visual reasoning,
motivating the existences of several challenging datasets for
multi-step, compositional visual reasoning [125], [126]. The
CLEVR dataset [125] consists of a set of compositional ques-
tions over synthetic images rendered with only 3 classes of ob-
jects and 12 different properties (e.g., large blue sphere), while
the GQA dataset [126] operates over real images with a much
larger semantic space and more diverse visual concepts.

As the earliest work, Andreas et al. [123] propose the NMNs
to compose heterogeneous, jointly-trained neural modules into
deep networks. They utilize dependency parsers and hand-
written rules to generate module layout, according to which they
then assemble a deep network using a small set of modules to
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answer visual questions. Later work on dynamic module net-
works (D-NMNs) [127] learns to select the optimal layout from
a set of candidate layouts which are automatically generated us-
ing hand-written rules. Instead of relying on off-the-shelf parsers
to generate layouts, Hu ef al. [128] and Johnson et al. [129]
concurrently propose to formulate the layout prediction prob-
lem as a sequence-to-sequence learning problem. Both models
can predict network layouts while simultaneously learn network
parameters end-to-end using a combination of REINFORCE
and gradient descent. Notably, the model proposed by John-
son [129] designs fine-grained highly-specialized modules for
CLEVR dataset [125], e.g., filter_rubber_material,
which hard-code textual parameters in module instantiation. In
contrast, the End-to-End Module Networks (N2NMNs) model
proposed by Hu ef al. [128] designs a set of general modules,
e.g., Find, Relocate, that accept soft attention word em-
beddings as textual parameters. In the later work by Hu et al.
[130] — Stack Neural Module Network (Stack-NMN), instead
of making discrete choices on module layouts, the authors make
the layout soft and continuous with a fully differentiable stack
structure. Mascharka et al. [120] proposes a Transparency by
Design network (TbD-net), which uses fine-grained modules
similar to [129] but redesigns each module according to the in-
tended function. This model not only demonstrates near-perfect
performance on CLEVR dataset [125] but also shows visual at-
tention that provides interpretable insights into model behavior.

Although these modular networks demonstrate near-perfect
accuracy and interpretability on synthetic images, it remains
challenging to perform comprehensive visual reasoning on
real-world images. Recently, Li et al. [131] propose the Percep-
tual Visual Reasoning (PVR) model for compositional and ex-
plainable visual reasoning on real images, as shown in Figure 14.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 7, JULY 2020

The authors design a rich library of universal modules ranging
from low-level visual perception to high-level logic inference.
Meanwhile, each module in the PVR model is capable of
perceiving external supervision from guidance knowledge,
which helps the modules to learn specialized and decoupled
functionalities. Their experiments on the GQA dataset demon-
strate that the PVR model can produce transparent, explainable
intermediate results in the reasoning process.

Neural-Symbolic Reasoning: In addition to organizing mod-
ular neural networks with linguistic layout, neural-symbolic rea-
soning is also an advanced and promising direction which is mo-
tivated by the cognitive models from cognitive science, artificial
intelligence, and psychology as well as the development of cog-
nitive computational systems integrating machine learning and
automated reasoning. Garcez et al. [133]introduce the basicidea
of neural-symbolic reasoning: Neural Networks are first used
to learn low-level perceptional understanding of the scene, and
then the learned results are regarded as discrete symbols to con-
duct reasoning under any reasoning techniques. Most recently,
Yi et al. [132] explore the ability of neural-symbolic reasoning
under visual question answering. The task of visual question an-
swering is disentangled into visual concept detection, language
to program translation, and program execution. By learning vi-
sual symbolic representations and language symbolic represen-
tations, neural-symbolic reasoning is able to answer the visual
question by ‘executing’ the learned language symbolic codes
on the visual symbolic graph under a pre-designed program
executor.

Neural-symbolic reasoning attracts lots of research interests
recently for its capability of utilizing DNN‘s powerful feature
representation ability and simulating human’s high level reason-
ing and cognition. However, the ad-hoc program designer and
complex program executor used by neural-symbolic reasoning
severely restrict its performances and developing better program
designers and executors really deserves more investigations in
the future.

IV. FUTURE RESEARCH AND DIRECTIONS
A. Multimedia Turing Test

In this paper, we introduce the concept of multimedia intel-
ligence and present a loop (as is illustrated in Fig. 1) between
multimedia and Al in which they interactively co-influence each
other. As we mentioned before, the half loop from multimedia to
Al (machine learning) has been well studied by recent research
while the other half of the loop from AI (machine learning) to
multimedia has been far less investigated, which indicates the
incompleteness in the loop. We consider multimedia Turing test
as a promising way towards completing the the loop. Multime-
dia Turing test consists of visual Turing test (visual and text),
audio Turing test (audio and text) etc., where the Turing test is
conducted on multiple multimedia modalities. We take visual
Turing test as an example in this section and argue that it will be
similar for other members in multimedia Turing test. Passing vi-
sual Turing test which aims to evaluate the computer algorithm’s
ability of human-level concept learning may serve as a further
step to enhance the human-like reasoning for multimedia. The
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introduction of visual Turing test is originally motivated by the
ability of humans to understand an image and even tell a story
about it. In a visual Turing test, both the test machine and human
are given an image and a sequence of questions that follow a
natural story line which similar to what humans do when they
look at a picture. If we human fail to distinguish between the
person and machine in the test by checking their answers to the
sequence of questions given an image, then it is fair to conclude
that the machine passes the visual Turing test. It is obvious
that passing a visual Turing test requires human-like reasoning
ability.

B. Explainable Reasoning in Multimedia

For future work, exploring more explainable reasoning
procedures for multimedia will be one important research
direction deserving further investigations. One simple way is to
enrich deep neural networks with reasoning-characteristics by
utilizing other reasoning characteristics to augment deep neural
networks. We should equip deep neural networks with more and
better reasoning-augmented layers or modules, these modules
would improve DNN’s representation ability. For example,
various multimedia objects can be connected by heterogeneous
networks and thus be modeled through GNNs. Then it will
be promising to combine the ability of relational reasoning in
GNN with human-like multi-step reasoning to develop a new
GNN framework with more powerful reasoning ability. Taking a
deeper thinking, the most attractive part of human-like cognition
learning (perception-reasoning cascade learning in Fig. 11) is
that the reasoning process is transparent and explainable, which
means we know how and why our models would act toward
a certain scenario. Thus designing more powerful reasoning
models with the help of first-order logic, logic programming
language, or even domain-specific language and more flexible
reasoning technique deserves further investigation. Also, the au-
tomation of program language designing and program executor
can enable the adoption of neural-symbolic reasoning in more
complex scenarios, which is another promising way towards
explainable reasoning in multimedia. Last, given that current
neural networks and the reasoning modules are optimized
separately, the incorporation of neural network and reasoning
through a joint-optimizing framework plays an important role
in achieving the goal of explainable reasoning in multimedia.

C. AutoML and Meta-Learning

Automated Machine Learning (AutoML) and Meta-learning
are exciting and fast-growing research directions to the re-
search community in both academia and industry. AutoML tar-
gets at automating the process of the applying end-to-end ma-
chine learning models to real-world problems. The fundamental
idea of AutoML is enabling a computer algorithm to automat-
ically adapt to different data, tasks and environments, which
is exactly what we human are good at. Although some efforts
have been made on developing AutoML models through ex-
ploring Neural Architecture Search (NAS) for deep neural net-
works and Hyper-Parameter Optimization (HPO) for general
machine learning models, they are still far from achieving a level
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comparable with human, let alone applying the core idea of Au-
toML to multimedia data which are multimodal in essence.

Meta-learning, i.e., learning to learn, aims at extracting and
learn a form of general knowledge from different tasks that can
be used by various other tasks in the future, which is also a
unique characteristic possessed by human. Existing literature
on meta-learning mainly focus on measuring the similarities
across different data or tasks and attempting to remember (keep)
previous knowledge as much as possible with the help of extra
storage. It is still a long way to go for the current algorithms to
summarize and further sublime previous data/knowledge into a
more general form of knowledge shared across various tasks in
a human-like manner.

Therefore, applying the ideas of AutoML and meta-learning
on multimodal multimedia problems and developing the ability
of human-like task/environment-adaptation and general knowl-
edge sublimation is another key ingredient for advancing the
new wave of AL

D. Digital Retinas

Last but not least, as we point out in Fig. 11, there are actually
no strict boundary between perception and reasoning during the
process of human cognition — it is possible that we perceive and
reason at the same time. Therefore, developing some prototype
systems simulating this process may push the loop of multimedia
intelligence one giant step towards a perfect closure.

Take the real-world video surveillance systems as an exam-
ple, video streams in the current systems are firstly captured and
compressed at the cameras, and then transmitted to the backend
severs or cloud for big data analysis and retrieval. However, it is
recognized that compression will inevitably affect visual feature
extraction, consequently degrading the subsequent analysis
and retrieval performance. More importantly, it is impractical
to aggregate all video streams from hundreds of thousands
of cameras for big data analysis and retrieval. The idea of
human-like cognition learning, i.e., cascade of perception and
reasoning, can be adopted as one possible solution. Let us image
that we design a new framework of camera, which is called
digital retina. This new digital retina is inspired by the fact
that a biologic retina actually encodes both pixels and features,
while the downstream areas in the brain receive not a generic
pixel representation of the image, but a highly processed set of
extracted features. Under the digital retina framework, a camera
is typically equipped with a globally unified timer and an
accurate positioner, and can output two streams simultaneously,
including a compressed video stream for online/offline viewing
and data storage, and a compact feature stream extracted from
the original image/video signals for pattern recognition, visual
analysis and search. There are three key technologies to enable
the digital retina, including analysis-friendly scene video cod-
ing, visual feature compact descriptor, and joint compression
of both visual content and features. By real-time feeding only
the feature streams into the cloud center, these cameras thus are
able to form a large-scale brain-like vision system for the smart
city. There will be no doubt that successfully possessing such a
brain-like system can dramatically move the current multimedia
research towards a more rational and human-like manner.
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V. CONCLUSION

In this paper, we reveal the convergence of multimedia and
Al in the “big data” era. We present the novel concept of Mul-
timedia Intelligence which explores the co-influence between
multimedia and Al The exploration includes the following two
directions:

1) Multimedia drives Al towards more explainability.

2) Al in turn boosts multimedia to be more inferrable.

These two directions form a loop of multimedia intelligence
where multimedia and Al enhance each other in an interactive
and iterative way. We carefully study the circles in the loop,
in particular, investigating how multimedia promotes machine
learning and how machine learning in turn boosts multimedia.
Last but not least, we summary what have been done in the
loop already and point out what needs to be done to complete
the loop, followed by our thought on several future research
directions deserving further study for multimedia intelligence.
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